AMIDOSTOMATINAE (NEMATODA: TRICHOSTRONGYLOIDEA) FROM AUSTRALIAN MARSUPIALS AND MONOTREMES

by Patricia M. Mawson*

Abstract

Summary MAWSON, Patricta M. (1973).-Amidostomatinae (Nematoda : Trichostrongyloidea) from Australian marsupials and monotremes. Trans. R. Soc. S. Aust. 97(4), 257-279, 30 November, 1973.

This work is a revision of the genera Austrostrongyius Chandler and Nicollina Baylis. Two new genera are proposed, Paraistrostrongylus and Woolleya; these four genera, with Patricialifta Inglis, belong to the Amidostomatinae. Filarinema Mönnig is transferred to the suhfamily Mackerrostrongylinae. Austrostrongylas and Parausirnstrongylus spp are recorded from a phalanger and from macropod marsupials, Nicoltina from monotremes and the numbat (a dasyurid), and Woolleya from dasyurids and a native eutherian, the water rat,

New species described are Austrostrongylus hypsiprymhodonis from Hypsiprymnedon moschatus; A. paratypicus from Macropus rafogrisets; A. chandleri from Macropus hicolor and M, rufogriseus; Paraustrostrongylus bettongia from Bettongia cuniculus, P, trichosuri from Trichosurus vulpecula: Nicollina culabyi and N. inglisi from Myrmecohius fasciatus; Woolleya sprenti from Dasyurus viverrinus, Antectinus stuartī, Dasyurops maculatus and Thylacinus cgnocephalus: W, hickmani and W. monodelphis from Antechinus stuarti; W_{r}, martini from Antechinomys spenceri.

Species redescribed in whole or in part are Austrostrongylus macropodis Chander, A. wallabiace Johnston \& Mawson, A. aggresatus Johnston \& Mawson, A. minutus Johnston \& Mawson, A. thylogale Johnson \& Mawson, Paraustrostrongylus potoroo (Johnston \& Mawson) (syil A. potoroo), and Nicollina echidnae Baylis.

Other new combinations are Woolleya sarcophití (Cameron), W. cathiae (Inglis), W. iota (Mawson). W. acinocerits (Mawson), all transferred from Nicollina, and W, hydromyos (Mawson), transferred from Austrostrongyius.

Introduction

The trichostrongyloid nematodes from Australian vertebrates were discussed by Inglis (1966) who considered that all belong to the family Amidostomatidae. In the subfamily Amidostomatinae he included (from marsupials) the general Filarinerra Mönnig, Patricialina Inglis, Austrostrongylus Chandler and Nicollina Baylis. Filarinema, however, differs markedly from all other genera of the subfamily in the virtual absence of a buccal cap-sule-the teeth occur in an enlargement of the anterior end of the oesophagus, so this genus should be referred to the subfamily Mackerrastrongylinae Inglis, in which a buccal capsule is absent. Of the three genera from monotremes and marsupials remaining in Amidostomatinae, no Patricialina sp, has been fouth during the present study.

Up to the present, most of the species from marsupials have been identified as belonging to either Austrostrongylus (type species A. macropodis Chandler, 1924) or Nicollina Baylis, 1931 (type species N. tachyglossae Baylis, 1930). Proposing the genus Nicollia (which he changed to Nicollina in 1931) Baylis stated that this genus differs from Austrostrongylus in the presence of a shallower buccal capsule, the symmetrical bursa, the absence of ventral teeth, and in the shape of the tail of the female. More species were later attributed to each genus, and Mawson (1960, p. 264) pointed out that among species with ventral teeth, the female tail in some is conical and in others beats a terminal spine, and it was suggested that the best character on which to separate the genera would be the shape of the spicules, which in Austrostrongylus spp. are

[^0]entite and it Nicollinat spp. are bifid or trifid distally, Inglis (7968 , p. 336) ugreed with this and gave an zmended list of species belonging to each genus.

In the present study, 13 new species of amidostomes have been identified from monothemes and from a variety of Australian marsupials, including dasyurids, from whish onfy one species had previously been described (N. calfine Inglis. 1968). The identification of these has entailed the re-examination of all avaitable paratype or holotype specinens of existing species, and at re-evaluation of the generic characters.

Discussion

Two new genera are proposed, Paraustrosironsclus and Woolleya. Both Paraustrostrongy/us spp. and Austrostronyylio spp. are characterised by wide and thick lateral alae and and siogle-tipped spicules, and these features distinguish them from Nicolina spp. and Woolleya spp. in which lateral alae if present are small and thir and the spicule tips are divided. Distinet differences in the form of the buccal capsule and dorsal tooth distinguish Nicollina spp. trom Woolleya spp. These four generid are found in different hosts, Alsirgstrongy/us spp. and Paraustrostrongy/us spp. being recorded from macropods and phalangers (herbivores), Nicollina spp. from the echidna and the numbat (termite and ant-eaters) and the platypus (which eats worms, etc.) and Wholleya spp. from dasyurids, bandicoots, and at eutherian, the water rat (all carnivores),

However, thete are some species which are not satisfactorily accounted for. The spicules of N. camcroni (Mawson), W. sarcophile (Cameron) and W, acinocercus (Mawson) are not divided, but the body lacks the lateral alate and the characteristic bursa of Austrostrongylus and Parausirostrongylus. In Woollesa nwomedelptios n.sp. and iW. hydromyos (Mawson) the spicules are divided and the longitudinal erests are like those of Woolleva spp.. hut the tail of the female is pointed and lacks a spine. The position of these species will be discussed under Woolleya ng.

The characters of the four genera will be described in detail below, but some general remarks are made here about the cuticular swellings and crests commoniy found in species of all these genera. Cuticular ridges and cuticular inflations in the Heligmosonatidae have been studied in detail by Durette-Desset (1964. 1966) in species from the Old and New Wortds. According to this author almost all the
helgmosornes are rolled into a sinistral spiral. Some live coiled around vill (with the anterior end wwards the hase of the villus) and maintain their position by a combination of pinching with the internal (best developed) crests and the apposition of lateral crests and alae Others, in which different areas of the body bear the best-developed crests, also form a sinistral coil, but not around a villus, and these move through the mucus between the villi with it corkserew action, so that the outside of the coil (the dorsal body surface) which bears the besdeveloped crests, comes in contact with the villi.

Although they belong to a different group from the Heligmosomatidae, the Austratian amidostomes may be compared with then it some respects. If they are culled. it is in a sinistral spiral. In some genera (Aastrostronghlus and Paraisirostrongylus) the lateral alac are very well developed, nol only out from the body in a lateral direction, bul they are almost as thick, dorsoventrally as the hady (Figs. 7, 13, 26). The cuticle over these enlarged alac bears one or more longitudinal ridges, and there are also one or more crests on the ventral surface of the body proper. These alate differ from those described by Durelte-Desset as enlarged crests, because the enlargement is caused by subcuticular swelling. the crests themsclves being of normal size (as indicated by their cuticular "skeleton") and merely bornc on the inflated cuticle. In other genera, Nicollina and Woolleya, lateral alae are less distinct. and the longitudinal crests are varionsly distributed. In all cases males and females of the same species show similar peculiarites of structure and distribution of the crests. In some species, but hy no means in all, there is a gradient around the hody in the size of the crests. In many Australian species, crests are absent on the dorsal surface. An attempt has been made to classify the varinus species according to alae and crests. Those with two, wide, thick lateral atae form a natural group (also distinguished by other sharacters) which is further differentiated into the two genera Austrastrongyifes and Paraustrostrongylus. Among the remaining spectes, in which lateral alac if present arc of a different type, longitudinal crests are variously atranged - they may be many ($8-20$ of more) and distributed all round the body, or they may be few (2-4) and restricted to the ventral surface. However, nether of these types is associated with anyoone of the lypes of spicule tips, dorsal ray or femate
tail, so that further classification on the type of crests is impracticable.

Most of the specimens cxamined were not seen \bar{m} situ in the host, although a few were Found coiled round torn off villi,

Uniess otherwise indicated, all the transverse scctions figured were laken about the mudhody of the worm.

Measuncments of new material are given in Tables 1, 2, 3, of 4, as indicated in each case inder the species heading. Types of new species will be deposited in the South Australian Muscum, Adelaide.

Key to genera

1. Lateral alac wide and thick; dorsal lobe of hursa markedly thickened
2. Laterat aloe, if present, thin; dorsal lobe of bursa not thickened
3. Genital cone well developed, chitinised

Paranstrasirongylas
2. Genital cone not well developed, not cbitinised

Alistrastrongusus
3. Buceal capsule a shallow ring; dorsal looth blunt, prottusible.

Nicollina
3. Butecal capsule domed anteriorly; dorsal tooth pointed

Weolleya

AUSTROSF'RONGYLUS Chander

Amidostomatidac: Small usually coiled worms with thick and wide lateral alae; longitudinal cuticular crests on alse and on body proper; cephatic cuticle inllated; buccal capsule well developed, with one dorsal and sometimes two smaller subventral ocsophageal teeth. Mile: bursi more or Iess symmetrical, lateral lobes long, dorsal short and thick; dorsal ray usually dividing into three pairs of branches, externodonsal ray arising separately, other rays from same root, separating at tips; genital cone not distinct, spicules slender with simpie points, sometimes united by small alae. Female: tail tapering to long point, vulva near posterior end of body, ovejectors divergent. Parasites of small infestine of macropod marsupials.

Type spectes: A. macropodis Chandler, 1924: 160.
Other species: A. aggregatus Johnston \& Mawson, 1940b: 472; A. minutus Johnston \& Mawson, 1938; 195: A. thylogale Johnston \& Mawson, 1939: 534; A. paratypicus n.sp.; A. chandleri n.sp; A. hypsiprymmodon n.sp.

In some species of Austrustronsylus, perhaps an all, there is a strong tendency to the deposition of a dark reticular and gramular material under the cuticle. Durette-Dirsel (19G6, pe457. 461) notes a similar conditiun in some heligmosomes and, by staining, concluded that
it is a chitinoid substance. This occurs espeeially in the lateral alac and in the hursa, and sometimes in the cephatic inflation, but may also appear in the older female between vulva and anus, all round the body The distribution in the bursa appears to vary with the species; in many cases it obscures the dorsal ray, especisily in long-stored specimense it is resistene to clearing in lactophenol, but less so in creosote or Berlese's Fiuid.

In all species of Apsirostrongyius the dorsal lohe of the bursa, whether containing granular material of not, is much thickened, so much so that the lobe is in fact almost spherical, the inner or ventral face of the lobe extending to the cloaca. A genital cone, as such, is absent. Because of the shape of the bursa, the dorsal ray must be considered in three dimensions rather than two.

The characteristic bursa, and the striking strap-like form given to the body by the wide thick alac, appear to be important diagnostic features of the genus, although they have not previously been mentioned. Both characters are prosent in the type species of the genus, which is partially redescribed below.
Austrostrongylus macropodis Chandler, 1924: 160. From Bennett's Kangaroo, Macropus rufogrisetus var, bennetti.

FIGS. 1, 2
The type and paratype material of A. macropodis has been examined. The hololype male and cotype female (U.S.N.M. Helm. Coll. 26124) are on slites and impossible to examinc thoroughly. What is assumed to be the paratype material is in the collection of the Department of Biology, Rice University. This material (H,N. 23049) is labelled 'from Berinett's Kangaroo' and was worked on by Dr. Chandler. The specimens agree closely in most particulars with Chandler's description of A. macropodis. They have the wide lateral alac and the swollen dorsal lobe of the bursa which fiave been seen in all other species of the genus. Unfortunately the darkening of the dorsal lobe obscures the firal branching of the dorsal ray. It is clear, however, that the dark part of the dorsal lobe extends nearly to its posterior border, and that in Chandler's l'ig. 3 the clear part of the lobe is its swollen inner surface, which is unpigmented and which in sume positions of the bursa appears to be its postcrior border. Thus the dorsal ray extends rearly to the posterior edge of the bursa, arkd the dorsal lobe is shorter than indicated hy Chandler. There may be two or three pairs of
branches of the dorsal ray, but the tips of the inner branches shown here in Fig, 1 are not clear, If there are only two pairs, this is the only species of the genus in which this is so. The tips of the spicules are enlarged by alae, as figured by Chandfer.

The bodies of these specimens are so much contracted that a good transverse section could not be drawn. Allowing for some distortion, the sections made show alae and crests similar to those shown in Figs. 14 and 18, but with an extra crest on the dorsal aspect of the right side.

Key to species of Austrostrongylus

1. Female monodelphous. A. hypsiprymmodontis
I. Female didelphous 2
2. Vagina long, more or less equal to distance from vilva is tants A. asgregatus 2. Vagina shorl
3. Splcules with relatively wide alae round tips 4
4. Spictles with small or no alae at tips ... S 4. Male 45-5 mm long, spicules $375-500 \mu \mathrm{~m}$
A. macropodis
5. Male 3.8-4.7 mm long, spicules 520-700 $\mu \mathrm{m}$
A. paratypicus
6. Dorsal ray gives off first pair of branches, then bifurcates
A. minulus
7. Dorsal ray gives off two pairs of branches, then bifurcales
8. Tips of spicules united in small ala
9. Tips of spicules not united in alia

A, wollahioe
7. Three crests on each lateral ala; branches of dorkal tay elongate....... A. thelogate
7. One crese on each lateral ala; branches of Jorsal ray short, stout A. chandleri
Austrostrongylus wallabiae Johnston \& Mawson, 1939: 534, from Macropur ralrogrisens (syn. M. ruficollis).

FIGS. 3-6; TABLE 1
Host and locality: Macropus rafogriseus from Logan Village. Qld.
New specimens as well as the type material have been examined and the original description can now be amended. As was stated, the type specimeass are darkened by masses of granolar material deposited under the cuticle in the wide, thick, lateral alae, in the bursa, especially in the dorsal tobes and in the female at the posterior end of the body-in a few of the older specimens this region is so distended as to overtang the anus. In the newer specimens from Queensland there are similar dark masses but these are neither so thick nor so dark.

On the broad lateral alae there are Inngitudinal srests, three on one side, two on the other; there are also two large and one small ventral crests. There are no dorsal crests except those on the dorsal side of the alae (Fig 1).

In the female the lateral alac terminate at abou the level of the vulva, in the male the left ala reaches nearly to the bursa, and the right is rather shorten

The buscal capsule is well developed with two small ventral, and one large dorsal, teeth.

The spicules are very slender, with simpte acicular tips not enclosed in alae. The bursa is thiek-walled, especially the dorsal tobe, and is more or less symmetrical in some specimens the right lobe is rather longer and narrower than the left. The dorsal ray, seen more clearly in the new material has one more pair of branches that origitally described (Tig, 4).

The vulva in the original materiat is $500-600$ $\mu \mathrm{m}$ from the posterior end of the worm (not $1,500 \mu \mathrm{~m})$. The cuticle just in tront of the vulva is more or less inflated (Fig. 2).

Although the species is similar to A, macropodis, there are distinct differences in the bursst rays, and there appears to be less granular material deposited in various parts of the body.
Austrostrongylus aggregatus Johnston \& Mawson, 1940: 472, trom Wallahia bicolor (syn. Macropus uallabatus).

FIGS. 7-10: TABLE 1

Host and locality: Wallabia bicolor from Logan Village, Qld.
The type male and female and the paratype material of this species have been re-examined and compared with the new material. Mcasurements of the new material are given in Table 1.
Two asymetrical lateral alae are present, as well as three ventral tongitudinal crests. The oesophagus widens gradually in its posterior third.
The vagina is unusually long, teaching a distance anterior to the vulva about equal to that of the vulva from the posterior end of the body,
The bursa is thick, particularly the dorsal lohe, and darkened with a gramular deposit In one male this deposit is almost absem, and the branches of the dorsal ray quite clear (Figs. 8,9). The spicules are long and very slendef. both ending in one ala. The gobernaculum is a thin plate.
Austrastrongylus minutus Johnston \& Mawson. 1938: 195, from Macronus dorsalis.
FIGS. 11-12

The paratype material of this species has been examined; the lateral alae and the dorsal lothe of the bursa agree with the revised defimtion of these stmetures in Austrostromyyus. However, the few specimens have been greatly

flattened and a useful transverse section cannot be given. There appears to be only one ventrat body crest, apart from those on the alae. The lateral ilate extend beyond the vulva in the fernale, and in the male the teft gia is a little longer than the right. The tight side of the bursa is rather longer than the left, but the rays are similar on the two sides. The dorsal lohe is so swollen as to be almost spherical, and the three pairs of branzhes of the dorsal ray (not two pairs) lic aitmost at right angles to its main pxis.
Austrustrongylus thylogate Johnston \& Mawson. 1940a: 99, from Macropus engenii (syn. Thylogule eugenii), from Kangaroo 1, 5. Aust.; Mawson, 1959: 155, from Setoni,k brachyura, Yrom Rottnest I, W, Aust; ; Inglis. 1968: 336. from S, hrachyura. W. Aust.

$$
\operatorname{FIGS.} 13-14
$$

Specimens from the Kangaroo I. wallaby have been studied and compared wilh those of other species of Austrostrongy/us. The lateral alae are broad and wide, asymmetrical in section, with three asymmetrical crests on the alae and iwo ventral crests on the body.
A. Aloylogale appears to be free from the grabular deposits which obscure, or partially obscure, the bursi of some other species of the genus. The swollen dorsal lobe of the bursa is cleatr, and in it can be seen the three pairs of branches of the dorsal ray, penetrating the lobe in thice planes (Fig. 14). In the fermale the lateral alae extend to just behind the vulva; in the male the left contimues nearly to the bursa, the right ends shortly anterior to this. The spicule tips ate united in a very small ala.
Anstrostrongyhus paratypicus n.sp.

$$
\text { FIGS. I5-18: TABLE } 1
$$

Host and locality: Marropus nufogriseus from the Bathurst district. N.S.W
In the same lost animal as specimens of Austrostrongylus wallahiae, there were about 20 speemenc of a smaller and upparently new Anstrostrongylus sp. The body form is similar to that of A. wallabiae more or less tightly eniled. Thu lateral alae are very wide, with one crest on the left side and two on the right, and there are in addition two ventral crests. Towards the posterion end of the male the left ala terminates but the right, in most specimens dark with granular material, continues nearly to the fursa. In the female, the lateral alae extend to or a little beyond the vulva.

The buccal capsule is well developed, the dorsal tooth large and the two sub-ventral tecth
small. The nerve ring surrounds the oesophagus towards the end of the second third of its length. The excretory pore is close to or behind, the base of the oesophagus in the male. rather more anterior in the female.

The tail of the female tapers to a long cylindrical process. Both ovejectors are well devetoped. A uterine egg near the ovejector is 90 x $45 \mu \mathrm{~m}$.

The bursa is thickened with granular mateDal, expecially in the dorsal lobe, where at oflen obscures the detail of the dorsal ray. The lateral lobes are asymmetrical, the lelt wider than the right. The three lateral and two ventral rays are closer together in the tight tobe, diverging only near their tips. The externolateral ray of the left side is distinetly larger than that of the right. The dorsal ray gives off two branches before its final bifurcation, rem all in the same plane (Fig. 18).

The spicules widen near their distal ends; the tips are tlate, the alae arc folded around the lips when lying in the body and when disseated out; in no case were the spicules extruded naturally. The gubermaculum is very small and thin.

The species is distinguished from A, wallabiuce by the more posterior position of the vulva, the shape of the spicule tips, and the asyminetrical bursa. It seems to be close to A. macropodis (from the Tasmanan sub-species of Macropas rufagrisens). However, the spiculcs are longet. Becatise of this and the apparent difference in the branching of the dorsal fay, and also because the hosts tome from widely different localities, the two species are regarded as separate.
Anstrostrongylus chanderi n.sp.

$$
\text { FIGS } 19 \text {-24; TABIE } \mid
$$

Hosts and localitics: Macropus rufogriseus (type host) from Wallabia bicolor from Logan Village, Qld.
The body is loosely coiled. The lateral axymmetrical alae are well developed, each with one crest; it addition, two ventual crests ure gresent. The buccal capsule is well developed, the dorsal tnoth about hatf the depth of the capsule and the two sub-ventral tecth small.

The tail of the fermale tapers, ending in a thin finger-like piece. The vulva, well in front of the anus, leads to a shoyt vagina; the ovejectors are about equal in size. The cges are 75-R5 x 45-50 $\mu \mathrm{m}$.

The spicules are long slender throughout their length, and end in blunt tips sightitly eurved ventrally and enclosed in a siugle smalr
TABLE 1

Species	A. wallabiae	A. aggregatus	A. chandleri		A. paratypicus	A. hypsiprymnodontis
			(type host)	(W. bicolor)		
Male:						
Length (mm)	5,1-6.3	4.0-4.5	4.9-6.2	4.7-5.5		
Oesophagus	420-550	330-420	400-480	$4.7-5.5$ $380-415$	$3.8-4.7$ $330-450$	$4.3-4.5$ $280-310$
Length/Oesophagus	9.3-13.9	9.7-12.1	10.4-14.1	11.8-14.4	10.2-14.2	14.5-15.3
Ceph. inflation	85-90	65-75	80-90	75-80	88-92-14.2	14.5-15.3
Antr. end-nerve ring	not clear	210 (1x)	220-245			$\begin{aligned} & 60-70 \\ & 140-145 \end{aligned}$
Spicules -excr, pore	300-400	290-360	310-370	320-360		280-390
Spicules Length/spicule L.	600-730	840-1005	520-600	540-600	520-700	600-670
Female: $\begin{array}{llllll} & 8.3-4.7 & 8.0-10.5 & 8.7-9.1 & 6.5-8.2\end{array}$						
Length (mm)	7.8 (2x)	4.1-4.6				
Oesophagus	500-670	$300-400$	6.1-8.1	5.9-6.8	5.6-6.1	4,2-4.6
Length/Oesophagus	11.5-15.6	11.5-13.7	420-490 $13.2-16.6$	$420-455$ $13.6-15.6$	410-460	315-370
Ceph. inflation	100 (2x)	$71.5-13.7$ $70-80$	75-85 ${ }^{13.2-16.6}$	$13.6-15.6$ $70-90$	13.2-14.1	11.9-14.4
Antr. end-nerve ring		200-220	220-270	200-250	230-250	635-210
Tail -excr.pore		240-310	320-350	280-390	320-380	350-420
Tail Postr. end-vulva	100-140	90-100	90-110	100-110	100-130	90-95
Postr. end-vulva	1100-1300	390-550	600-1100	650-920	600-800	190-200
(${ }^{\text {Length/ } / \mathbf{P} \text {-vilva/tail }}$	$6.0-7.2$	8.2-11.5	6.6-10.3	7.3-9.1	7.6-9.7	23.0-23.2
P-vulva/tail	9.3-11.0	4.3-5.5	6.7-10.6	6.3-8.6	6.0-6.4	2.0-2.2

Figs. 15-18. Austrostrongylus paratypicas. Fig. 15.-Tead. Fig. 16.-Transverse section of body of male. Fig. 17.-Posterior end of female. Fig. 18.-Bursa of miale.
Figs. 19-24. Anstrostrongylus chandleri. Fig. 19.-Ilead, Fig. 20.-Transverse section of body of mate. Fig. 21,-Posterior end of female. Fig. 22.- Literal view of bursa. Fig. 23.-Ventral view of dorsal ray. Fig. 24.-Tip of one spicule.
Figs. 15, 19 and 20 to scale beside 20; Figs. 16, 18, 22 to scale beside 18; Figs, 23 and 24 to scale beside 23.
oval ala. The gutherinaculum is small and inconspicuous.

The bursa is more or less symmetrical, the dorsal lobe thick, the genital cone absent as such. The granular thickening of the bursa is strongly developed, darkening much of it, including the dorsal lobe and the area posterior and dorsal to the externo-dorsal rays.

The species resembles A. wallabiae in the arrangement of the butsal rays (Figs. 22, 23). It differs however in the distribution of the granular material in the bursa, in the absence of a lateral ala extending nearly to the bursa. and in the shape of the tips of the spicules. The form of the bursa and shape of the spicule tips are close to those of A. thylogale, but in
this species the bursa is without gramular inelusions, the spicules are shorter, and the shape of the dorsal ray is different.

It will be seen from the measurements given in Table I that the specimens from W. bicolor are snaller than those from the type host There is also some difference in the position of the longitudinal crests on the lateral aloe in specimens from the two hosts, although this is similar in males and fentales for the same host, and in collections from the same host species. The value of this difference is uncertain; no other morphological difference can be seen hetween the specimens.

Austrostrongylus hypsiprymnodontis r.sp, FIGS. 25-20; TABLE 1

Host and locality: Hypsiprymhodon moschates from Qld.
This is a small coiled worm, with very well developed lateral alae, of which the right is wider than the left. There are five longitudinal crests, two on each lateral ala and one on the ventral sutface of the body. In the female the right ala is a little shorter than the left, which widens considerably before ending at about the level of the vulva. In the male the two alac extend from just hehind the cephalic inflation pearly to the bursa, where they end abruptly at the same level.

The buccal capsule is well developed. The dorsal tooth is ahout half the length of the capsule. The excretory pore lies well behind the oesophagus.

The bursa is symmetrical, the dorsal lobe short and swollen and with a vesiculate structure internally, which rather obscures the dorsal ray. The arrangement of the rays is shown in Figs 28, 29. The spicules are long and slender and end in a point. The presence of terminal alas could not be determined. A small gubernaculum is present.

The tail of the female is about half the distance lrom vulva to posterior and of the body. Only one, the anterior, uterus and ovejector is present, Eggs are 63-65 $\times 35-37 \mu \mathrm{~m}$.

This species has been referred to Ausirosrongylus hecause of the inconspicuous genital cone, the origin of the externo-dorsal ray, and the waty the lateral alae in the male end at the same level just in front of the bursa. In these features it differs from Parausrostrongylus spp. It is dishinguished from other species of the genus by the monodelphous condition of the female and the posterior position of the vulva. The cuticular sweding ground the vulva is of

The irregulap form seen in other species of Ansmastrnugy/us rather than the sefinite ventral ougrowith seen in Parmutrostrongylur spp.

PARAUSTROSTRONGYLUS ת.g.

Amidostomatidae: Small, usually coiled, worms with thick, wide lateral alae; longitudinal crests present on alae and on rest of body; cephalic inflation present; ventral cuticle at posterior end of body inflated, forming prebursal, or prevulvar, swellings usually of distinetive shape. Buceal eapsute small, with dorsal oesophageal tooth Ventral teeth present or absent. Male: bursit of two lateral and one small dorsal lobes, thickened dorsally and usually ventrally; ex-terno-dorsal raty arising from base of dorsal, dorsal dividing into three pairs of branches, ventro-ventral tay diverging markedly at its base from latero-ventral and lateral rays; genital cone strongly chitinised, spicules long and slender, ending together in one or two alae; guhernaculum small, plate-like; Females tail tapering to long point: monodelphous, only anterior ovejector, interus, and ovary developed. Parasites of the intestine of macropod marsupials.

Type species: P. potoroc, syo. Aistrostrontgyltix potoroo Johnston \& Mawson, 1949.

This genus is close to Austrastrongylus in the form of the lateral alae, the swollen dorsal lobe of the bursa, and the tapeting tail of the female. It is distinguished from it by the presence of a well developed genjtal cone, divergent ventro-venteal rays in the hursa, and a prebursal cuticular inflation in the male, and by the absence of the postcrior part of the seprodustive system of the female.

Paranstrostrongylus petoroo (Jobnston \& Mawson, 1969: 64), from Pororous tridactylus.

FIGS. 30-33; TABLE 2

Host and locality: Posorous ridactylus from Hobart, Tas,
The type material of this species, as well as fresh material from the same host species, has been examined and a fuller description is now given.

The left lateral ala is thicker than the night; each bears two cresis, and in addition there are two ventral cuticular crests and one dorsoIatcral on the right side. These crests commence in the oesophageal region and continue to about the level of the vulva in the female and nearly to the bursa in the male. In the mile the left ala becomes greatly inflated fust ant-

Figs. 25-29. Austrostrongylus hypsiprymnodontis. Fig. 25.-Head of female. Fig. 26,-Transverse section of body of male. Fig. 27.-Posterior end of female. Fig. 28-Posterior end of male. Fig. 29.-Dorsal ray,
Figs. 30-33. Parausirostrongyhas potoroo. Fig. 30.-Transverse section of body of malc. Fig. 31.Transverse section of male shortly in front of bursa. Fig. 32, - Posterior end of male. Fig. 33.-Posterior end of female.
Figs, 26, 27 and 28 to scale beside 28; Figs, 29, 30. 31, 32 and 33 to scale beside 32.
terior to the bursa: the right ala ends a litlle anterior to this inflation. The subventral cuticle on the right side anterior to the bursa is raised into an elongate "blister" on which there are three obliquely longitudinal crests (Fig. 31).

The buccal capsule is small and the dorsal tooth selatively large. The ventral feeth are very smail. The nerve ring fies just behind the mid-length of the oesophagus and the excretory pore is near its base.

The tail of the female tapers to a long point. The cuticle anterior to the vulva is greatly enlarged, forming a rounded mass overhanging
the vulva. The shape of this mass is similar on all new specimens examined, from two hosts, but in the older specimens it is flattened. Only the anterior part of the female reproductive system is present.

The bursa is slightly asymmetrical, with the left side, and its rays, a little larger than the right. The thickening of the dorsal lobe is not very marked. The arrangement of the bursal rays is shown in Fig. 32. The spicnles are simple, undivided at the tips. A small gubernaculum is present. The genital cone is strongly chitinised, and probably acts as an aceessory guide for the spicule.

TABIE 2
Mreasurements of Paraustrostrangylus anp. Whess atherwise indicated, meastrementis are in μm :

	I, petoroo	P. bettongia	P. Trichormri
Mate:			
Length (mm)	2,4-2,6	4.0-4.4	4.3-5.3
Oesophagus.	240-275	340-380	350-420
Ceph. inflation	40-48	70-80	90-100
Antr.end-nerve ring	120-150	218-230	250-270
-excr-pore	210-230	330-400	$460-510$
Spicules	250-260	380-400	$380-450$
Gubernaculurt	40-45	45-50	35-40
Female: 5 (mat 50.6000			
Length (mm)	2.7-3,0	5.7-6.0	5.0-6.7
Oesophagus	250-290	340-410	400-435
Ceph, inflation	45-50	80-85	$80-100$
Antr end-nerve ring	130-140	200-220	230-260
-exer pore	200-250	280-340	440-510
Tail	90-120	105-140	120-150
Postr, end-vulva	150-200	310-370	250-330

Paraustrostrongylus bettongia n.sp.

FIGS. 34-41; TABLE 2

Hoss and locality: Bettongia gaimardi from Tas.
These are relatively large worms lying in tight or loose coils. There are two longitudinal crests on each tateral ala and two additional ventral crests. Each of these ends a little in front of the vulva in the female. Shortly in front of the bursa of the male, the right ala disappears but the left is much colarged. Between the termination of the right ala and the bursa there is an elongate subventral inflation bearing 3 to 4 oblique-longitudinal crests (Fig. 38).

In nearly every specimen the anterior end is curved back against the rest of the body. The cephalic inflation is about a fifth of the length of the oesophagus. The buccal capsule is shatlow, the dorsal tooth short. The nerve ring is at about the middle, and the excretory pore near the posterior end of the oesophagus.

All three lobes of the bursa are thickened. Ventral to the chitinised genital cone there is a cuticular thickeping, which merges at each side with the ventral part of the bursa, and which is penctrated by the ventro-ventral ray, The arrangement of the bursal rays is shown in Figs. 39-41. Because of the thickening of the dorsal lobe, the branches of the dorsal ray are not all in the same plane. The spicules end in alae, folded around the tips. The short guhernaculum is finely bossed.

The vulva is about three tail lengths from the posterior end of the body. Anterior to the vulva the ventral cuticle is greatly inflated, and hangs over the vulva in an elongate sausage
shaped mass. The shape of this mass is similar in all specimens from the two host animals. No vestige was seen of the posterior part of the female reproductive system. Eggs are $54-55 \times 32-33 \mu \mathrm{~m}$.

The species is distinguished from P. potoroo by the form of the bursa, which is not asymmetrical and is thicker-walled, by the size of the ventral tooth, the distance of the vulva from the anus, and the shape of the vulvar flap.

Paraustrostrongylus trichosuri n.sp.

FIGS. 42-47; TABLE 2

Host and locality: Trichosurus vulpecwia From

 D'Aiguillar and Camp Mt., Qld.These worms are coiled into a fairly tight spiral from which the anierior and posterior ends protrude. The lateral alac are well developed, the right with three longitudinal crests and the lefi with two, and there are also three ventral longitudinal crests. In the male the crests and right ala disappear a short distance in front of the bursa and are replaced by a sub-ventral inflation. The left ala is wider in this region and terminates close to the bursa. In the fernale the alae and crests are discontinued just in front of the vulya and there is a separate small ventral inflation just anterior to the vulva.

The ceptatic inflation is about a fifth of the length of the oesophagus. The buccal capsule is shallow, and the dorsal tooth small; subventral teeth are apparently absent.

In the female the tail tapers to a fine point; the vulva is about a tail length in from of the anus. Eggs are about $70 \times 45 \mu \mathrm{~m}$.

Figs. 34-41. Paraustrosthongylus bettomgia. Fig. 34.-Head of female. Fig. 35. - Transverse section of body of male. Fig. 36.- Posterior end of female. Fig. 37.-Posterior end of mate. Fig. 38.-Transverse section of body through prebursal inflation. Fig. 39. - Ventral view of bursa, without coverslip. Fig. 40.-Lateral wiew of hursn. Fig. 41,-Dorsal and externodorsal rays.
Figs. 34, 35, 39, and 40 to scale beside 40; Figs. 36 and 37 to scale beside 37 ,

The margin of the bursa is cotire, and the dorsal and ventral parts are swolten. The genital cone is strongly cuticularised. The arrangement of the rays is shown in Fig. 46. The dorsal ray however is partially obscured in all specimens examined by refractive inclusions in the bursal wall close to the mid-dorsal line; the ray is small, as it must be restricted to the region of the inclusions.

The species differs from both P. potoron and P. bettongia in the greater development of lateral alae in comparison with the hody diameter, as well is in the dorsal ray and the smaller prevulvar swelling. The bursit itself is less swollen than that of P. bettongia and more so than that of P, potoroo.

NICOLLINA Baylis

Nicollina Baylis, 1930: 550, syn. Nicollia Baylis, 1930, nec Nuttal, 1908, nec Kritschewsky, 1922.
Amidostomatinat: body with longitudinal crests and sometimes with one or two lateral alac; anterior end with inflated cuticle; buccal capsule shallow, stoutly built, containing a blunt dorsal oesophageal tooth. Bursa more or less symmetrical, dorsal lobe absent or poorly developed; dorsal ray dividing into four branches; externo-dorsal ray arising separately or from base of dorsal ray: lateral and ventral rays somewhate divergent. Spicules usually bifurcate or trifurcate; gubernaculum present. Fe -

Figs. 42-47. Paraustrostrongylus trichosuri, Fig. 42.-Head of male. Fig, 43.-Transverse section of body of female. Fig. 44.-Posterior end of female. Fig. 45. - Posterior end of male. Fig, 46.-Bursa spread nut, inside view. Fig. 47.-Tips of spicules,

Figs. 43 and 46 to same scale, 44 and 45 to same seale, 42 and 47 to same scale.
male didelphous, vulva towards posterior end of body; tail of female with dorsal terminal spike and two short subventral terminal lobes. Parasites of monotremes and Australian marsupials.

Type species: N. tachyglossae (Baylis).
Other species: N, echidnae (Baylis, 1930); N. ridei Inglis, 1969: N. cameroni Mawson, 1959; N. calabyi n.sp.; N. inglisi n.sp.; N. baylisi n.sp.; N. mundayi n.sp.
Through the courtesy of Dr. W. G. Inglis and the British Museum (Natural History) it has been possible to examine the type specimens of N. iachyglossae and N. echidnae. In
comparing these with other species attributed to Nicollina, it appears that not enough consideration has been given to the shape of the buccal capsule and the dorsal tooth. In N. tachyglossae (Fig. 48) and N. echidnae the buccal capsule is shallow, ring-like, and stoutly built, and the dorsal tooth is blunt and apparently readily protruded through the mouth (Fig. 49). In some other species (N. cathiae Inglis and N. sarcophili Cameron) the buccal capsule is thinner, deeper, and somewhat domed, and the dorsal tooth is erect and pointed and does not seem ever to be protruded through the oral opening. Moreover, in N. tachyglossae and N. echidnae the tail of the
female ends in a dorsal spine and two subventral processes. In species with a deeper buccal capsule this type of tail has not been seen.

It is concluded that species having these characteristics in common should be grouped in a genus for which the name Nicollina is availahle, For the other species formerly included in Nicollina a new genus, Woolloya, is proposed.

Key to species of Nicollina

1. Worms more or less colled
2. Worms not coiled
3. Dorsal ray with thee pairs of branches 3
4. Dotsal ray with two pairs of branches.. 4
5. Buccal ring thick. lobed anteriorly N. nolabyi
6. Busceal ring not lohed, thinner and deeper
N_{-}inglisi
7. Spicules hifid . . . N. ridei
8. Spicules simple ...N. cameroni
9. Spicules trifid
10. Spicules bilid
11. One lateral ala present N. ectidnae
12. Lateral alae absent .-.... N. pachyglossue
13. Iateral alac present N. mandayi
14. Lateral alac absent
N. boylisi

Nicollina echidnae Baylis

EIG. 50
Nicollina echidrae (Baylis) Baylis, 1931, Mawson, 1959: 154; syn. Nicollind echidnae Baylis, 1930; 14. From Tachyglassus acaleatus.
The matcrial examined in 1959 from an echulnat from Kangaroo I. has now been compared with the type material of the species, and the identification confirmed. A transverse section of the Kingaroo 1. specimen is given. In thas species, and in N. tachyglossue, the excretory pore not mentioned hy Baylis is postaesophageal.
Nicollisa cameroni Thomas, 1959: 154, from the Echidnit, Tachyglosws aculoatus.

FIGS. 51-52

The paratype material of this species has been re-examined. The body was described as having two lateral alae and "some appearance of torgiludinal banding". Transverse sections show a very slight widening of the cuticle laterally and in addition about 16 crests, most of them lateral or ventral. The tooth is blunt, and lies for the most part in the oesophageal funnel.

This species differs from others of the genus in that the spioules are not divided distally, but in view of the similarity of other characters it has been retained in the genus. It differs very markedly from species of Austrostrongvius and

Piraustrostrongylus, in which the spicules are single, in characters of the lateral alae, buccal capsule, dorsal tooth, and bursa,
Nicollisa haylisi n.sp.
FIGS. 53-59: TABLE 3
Host and locality; Tachyglossus aculeafus, Tas,
These are straight worms, with a cephalic inflation, followed by numerous very low longitudinal erests. Lateral alae ate absent. The buccal capsule is very shallow. The oesophagus is more or less cylindrical in its anterior twothirds then widens to an elongate bulb at the posterior end. The nerve ting suirounds it just behind its midlength and the excretory pore and cervical papillae are at about the same level near its posterior end,

The lateral lobes of the bursa are very long and are folded over each other. The externadorsal ray arises from the dorsal and diverges widely from it. The dorsal ray divides into tivo bifid branches near its distal end. The spicules are bifid for about half their length. The outer branch of each ends in a barb and bears about 10 well-imarked transverse ridges in the middle third of its length. The end of each branch is surrounded by an ala, that on the smaller branch much wider than that on the larger. The guberaaculum is stout, pitted on the surface, and rather more than half the spoule in length.

The tail of the female is rounded and bears a subterminal spike and two small lobes. The vulva, a transverse slif in a depression of the body wall, lies at a little less than a sixth of the body length, or 20-27 lail lengths, from the posterior end of the body. Uteri are opposed. The eggs are $79-80 \times 43-45 \mu \mathrm{~m}$.

The species is in many ways very like N. acchyglossae, a straight worm with 8-10 longiIudinal crests and with somewhat similar, but trifid, spicules. The two species difler however in body length, position of the vulva, and size of the gubernaculum.

Nicollima mundayi n.sp.

FIGS. 60-66: TABLE 3
Host and locality: Teckeghossus aculcutor and Orzirhorhynchus wnatrues from Tas.

This is a short straight worm very similur in some respects to N. echidnace. There are two lateral alac and about 20-22 longitudinal cuticular cresis, more or less evenly distributed around the body circumference for mosi of ils lengit, hut fewer towards the extremities.

The buecal capsule is shott, ring-shaned; the dorsal looth is blunl ind, at rest, hardly pro-

Figs. 48, 49. Nicollina tachyglossae, lateral and dorsal views of anterior end.
Fig. 50. Nicollina echidinae, transverse section of body,
Figs. 51, 52. Nicollina cameroni. Fig. 51.-Head. Fig. 52.-Transverse section of body.
Figs. 53-59. Nicollina baylisi. Fig, 53.-Oesophageal region. Fig. 54.-Lateral view of head. Fig. 55.-Transverse section of body just posterior to oesophaqus. Fig. 56--Posterior end of male. Fig. 57.-Dorsal ray. Fig. 58.-One spicule. Fig. 59.-Tail of female.
Figs. 48, 49, and 51 to scale beside 51; Figs. 52 and 53 to same scale; Figs. 54, 57, 58 , and 59 to scale beside 59 .
jects into the buccal cavity. The nesophagus is cylindrical for most of its length, ending in a bulls. The nerve ring lies at about half, and the excretory pore and the small but distinct cervical papillae at three-quarters the length of the oesophagus.

The end of the tail of the female bears a terminal spike and two small subterminal lobes. The vulva, at about 8-11 tail lengths in front of the anus, lies between two rounded expansions of the lateral alae. Eggs are about 75×40 $\mu \mathrm{m}$.

The spicules are bifid, the outer branch of each is longer and stouter than the other and ends in a barbed point, the inner branch ending
simply. As only two male worms are present, the spicules were not dissected out. Their appearance is very similar to those of N. bay$l i s i$, on which the terminal alae were not visible until the spicules were out of the body. The gubernaculum, at least two-thirds the length of the spicules, is strongly built and its surface pitted. The lateral lobes of the bursa are not particularly long. The rays are shown in Fig 63.

The species closely resembles N. baylisi, but is distinguished by being distinctly shorter, with lateral alae and with fewer and more prominent cuticular crests, as well as by the shape of the bursa, the absence of ridges on the spicules,

TABLE 3

Measurements of Nicollina baylisi, N. mundayi, N. calabyi, and N. inglisi. Unless otherwise ïndicated, measurements are in $\mu \mathrm{mt}$.

Species	N. baylivi	N. mutadayi		N. calabyi	N. inglisi
Host	echidna	echidna	platypus	numbat	numbat
Male:					
Oesophagus	$12.8-14.1$ $500-525$	4.2, 5.500	$4.6-5.7$ $400-450$	$2,4-3.4$ $330-360$	$2.1-3.4$ $210-250$
Ceph. inflation	80 (3x)	75,75	70-100	50-70	60-65
Anir. end-nerve ring	210-220	215, 220	220-230	120-170	100-120
Spicule -excr. pore	$360-400$	275, 315	370-390	160-260	150-180
Spicule	240-275	270, 295	250-270	600-700	400-440
Gubernaculum	145-165	140, 152	140-160	80-110	70-80
Female:					
Length (mm)	24.3, 25.3	6.5-8.1	7.7-8.0	2.5-4.2	2.3-3.4
Oesophagtis	600.520	480-510	450-500	260-400	270-335
Coph. inflation	100, 110	75-80	80-110	60-80	55-70
Antr. end-nerve ring	300, 270	210-240	230-240	120-200	100-115
-excr.pore	500, 550	230-305	380-400	150-345	140-220
Tail	190, 150	120-140	140-165	70-130	60-90
Postr end-vulva	3800, 4100	1250-1400	1500-1600	350-460	200-300

Figs. 60-66. Nicollina mundayi. Fig. 60.-Head. Fig. 61.-Oesophageal region. Fig. 62.-Transverse section of body. Fig. 63.-Posterior end of malc, ventral view. Figs. 64 and 65 . -Ventral and lateral views of region of vulva. Fig. 66.-Tail of female.
Figs. 61-66 to same scale; Figs. 64 and 65 to same scale.
and the presence of cuticular flaps beside the vulva. The measurements ate similar to those of N. eathidnac, but the twe specics are distinguished by the shape and size of the spicules and of the dorsal and externo-dorsal rays, and by the presence of the well-dcveloped left lateral ala in N. echidnae.

Nicollina calabyi n.sp.

FIGS 67-72, TABLE 3

Host and locality: Mypmecobius fasciatus from W. Aust.

The body forms a loose coil. The length of the anterior cuticular inflation is about one and a half times the hody width just behind the inflation, and about a fifth to a sixth the length of the oesophagus. The cuticle of the rest of the body is raised juto 8-9 lateral and ventral longitudinal crests, of which the lateral are the best-developed.

The mouth is surrounded by six small cuticular lips. The buccal capsule is stoutly built, its anterior edge six-lobed, each lobe formed by a thickening of the wall on the outer side of the capsule. The dorsal tooth is rounded at the apex, and reaches to about half the depth of the huccal capsule. The cesophagus is wider in the second half of its length and is surrounded by the nerve ring at the end of its first quarter; the excretory pore lies at about the end of the third quarter.

The tail of the female is rotinded at the tip. with a subterminal spine of low ventral prominence. The vulva is a transverse slit, three to four ail lengths in front of the anus. At the level of the vulva the cuticle is raised inlo three longitudinal crests, one, bilobed, to the left of the vulva, a frilled narrow one to the right of the vulva, and a longer wider one to the right of this again (Fig. 72). The sizes and arrangement of these crests are similar in all the specimens available. The eggs are thin-shelled, $65-70 \times 35-40 \mu \mathrm{~mm}$.

The spiculcs of the male are bifid for the temminal $80-100 \mu \mathrm{ml}$, the shorter of the two ends pointed, the longer truncated and slighty batbed. The gubernaculum is elongate, rounded at the ends, and thicker in the central parts. The bursa has a short dorsal lobe, sightly separated from the large latero-ventral lobes. The rays are arranged as shown in Fig. 69.

The species is placed in the genus Nicollina because of the form of the huceal capsule and tooth. It differs from the species from monoIremes in the form of the dorsal ray, as well as
in the presence of 3 cuticular crests near the vulva.

Nicollina inglisi ni.sp.
FIGS. 71-76; TABLE 3
Host and lecality: Myrmecohins fasciatus from W. Aust.

This is a rather slender loosely coiled worm. The length of the inflated cephalic cuticle is about twice the width of the body just behind it. There are $8-10$ tongitudinal crests on the body, two dorsal and two lateral, and the rest ventral. The buccal cavity contains a large blunt tooth. The nesophagus widens in its posterior third and the nerve ring surrounds it al about the end of the first third. The excretory pore is at the end of the second third.

The tail of the fernale lapers to a bi-lobed tip, with a spike arising subterminally. The vulva is a transverse slit situated about three to four times the tail length in front of the anus. The cuticle just anterior and posterior to the vulya is slightly inflated and strongly striated, Amphidelphous, posterior uterus short. but containing developing eggs. Eggs are up to 100 $\times 50 \mu \mathrm{~m}$.

In the male, one side of the bursa is slightly longer than the other, but the rays are similarly disposed. The dorsal lobe is short and the dorsal ray thin (Fig. 74). The spicules are bifid, with une branth shorter than the other. and the four tips, two from each spicule. appear to be enclosed in one terminal ala

The species is close to N. calabyi, which was found in the same collections. It is distinguished by the more slender build of the body. the relatively longer cephatie inflation, the slightly thimer-walfed and deeper buccal capsule, without anterior thickening, in addition, the guhernaculum is longer, and there is a small hut consistent difference in the dorsal rays.

WOOLLEYA n.g.

Amidostomatinae: Small, more or tess coiled worms with inflated cophalic cuticle and longitudinal cuticular crests behind this; buccal capsule well developed, with pointed dorsal tooth. Male; bursa more or less symmetrical, dorsal lobe small, dorsal ray dividing into two or three branches externo-dorsal ray arising from dorsal tay or separately: lateral and ventral rays arising together, diverging from midlengths; genital cone not strongly developed. spicules single or divided at tips; gubernaculum well developed. Female: tip of tail rounded with thin spike, or tapering to a point; vulva

Figs, 67-72, Nicolling calabyi. Fig. 67.-Head. Fig. 68. Transverse section of body, Fig. 69,Bursa, Fig. 70. Gubernaculum and tips of ove spicule, lateral view. Fig. 71.-Tips of both spicules, ventral view. Tig. 72.-Posterior end of female.
Figs. 73-76. Nicolfinu inglisi. Fig, 73.-Anterior end. Fig. 74.—Hursa. I.jg. 75.-Tips of spicules. Fig. 76.-Posterior end of female.
Figs 67, 70, 71, 73, and 75 to scale beside 73; Figs. 68,69 and 74 to scale beside 69; Figs. 72 and 76 to scate beside 76 .
towards posterior end of worm; mono- or didelphous. Parasites of intestine of Australian mammals, mainly of marsupials.

Type species: W. sprenti n.sp.
Oiher species: W. cathiae (Inglis), syn. Nicollina cathiae: W. sarcophili (Cameron), syn. Nicollina sarcophili; W. iota (Mawson), syn Nicollita iona; W. acinocercus (Mawson), syn. Austrostrongylus acinocercus; W. hydromyos (Thomas), syn. A. hydromvos;
W. hicknani n.sp.; W. martini n.sp., W. monodelphis n, sp.
The genus is named in recognition of the help given by Dr. Patricia Woolley in collecting specimens Irom dasyurids.

Woolleya specics are distinguished from Nicollina spp. chiefly by the shape of the buccal capsule which is cup-like with relatively thin walls, and by the shape of the sharply pointed dorsal tooth, originating from the anterior end
of the gesophagus rather than, as in Nicollina spp.t from the anterior end of the wall of the lumen of the oesophagus.

Figures are given of transverse sections of W. acinocereus and W. hydromyos, which have been re-cxamined but are not redencribed here (Figs. 71, 78).

Key to species of Woolleya

1. Tail of female tapering to a point
2. Tail of female rounded at tip, with spike. 4
3. Spicules not divided, or trifidi
iv. Nareophili
4. Spicules bifid
. 3
5. Female didelphaus
6. Fenale monodelphous ... W. monodelphí
7. Spicules roi divided - W. acinoccrems
8. Splcules bifid
9. Longitudinal crests more or less evenly distribuled around body

5
tri-
Longitudinal crests only on ventral surface . 8
6. Tip of longer brance of each spleule enlarged

W, iona
6 Neither tip of spicutes enlarged 7
7. Dorsal ray ends in three pairs of branches
W. marlinis
7. Dorsal ray ends in two pairs of branches w. hichmari
B. Narrow lateral alae present W. cothiae
8. Lateral alge absent W. sprenti

Woolleya sprentl n.sp.

FIGS. 79-85; TABLE 4
Host and localities: Dasyarus viverrious from Icena, Tas. (type host and locality): Arifechinue stuartii frorm Mt. Titbinbilla, A.C.T.; Davyurops haculans from N.S.W.: Thylacuns cynocepholas From Tas,
These are relatively long, slender worms, some coiled loosely, some in a tight spiral. The inflated cephalic cuticle, about a quarter the length of the oesophagus, is lightly striated transversely, the cuticle on the rest of the body is more heavily striated and thrown into three longitudinal crects extending most of the body length on the ventral side.

The huccal capsule is large with a dorsal tooth just over half the depth of the capsule. Ventral teeth were not seen. The nerve ring is just behind the mid-oesophagus and the excretory pore near the posterior end of the oesophagus.

The posterior end of the female narrows abruptly just in front of the anus and the tail is digitiform with a rounded tip bearing a terminal spike. The vulva is about five to eight tail-lengths in front of the anus. Two ovejectors
and uteri are present, the posterior much the shorter

The bursa is symmetrical, its darsal lobe short but quite distinct. The arrangement of the bursal rays is shown in Figs. 82 and 83. Each spicule bifurcates at abouf a fifth its length: one branch is slightly longer and stouter than the other, and is curved inwards at the tip. The gubernaculum is long and wide, the central part more heavily chitinised,

The specimens (two females) from Thylacimus cynocephalus agree in all particulars with the types. It view of the difierent host, it is possible that they may belong to a different species, distinguishable only by characters of the male. As the host species is now virtually extinct it is unlikely that a male will be found, unless in some museum. The specimens des cribed here were found in a museum specimen of the host, through the enterprise of Professor J. F. A. Sprent.

This species most closely resembles N. hydronyos Thomas in the shape of the spicules and the arrangement of the dorsal ray. The two species differ however in the lengths of spicules and gubernaculum and in the shape of the female tail.
Woolleya martini n,sp,
FIGS. 86-89; TABLE 4
Host and locality; Antechinomys spenceri from Sandringham, Qld.
This is a relatively small species, with 10 longitudinal cuticular crests. The cephalic inflation of the cuticle is about iwice as long as its diameter, and between a thirs and a quarter the length of the oesophagus. The cuticle around the mouth forms six distinct lips. The dorsal tooth is about half the length of the buecal capsule. The exerctory pore lies at or just behind the base of the oesophagus.

The spicules are bifid in their distal quarter: borh branches are slender, one a litile more curved and slightly longer than the other. The arrangement of the bursal rays is shown in Fig. 8%.

The body of the female narrows just in front of the anus and ends in a digitiform tail, rounded at the tip and beariog a temmal spine. Only two, sub-ventral, erests continue posterior to the vulva.

This species is distinguished from W, sprenfi chiefly by the number of cuticulat erests, and by the origin and shape of the externo-dorsal say.

[^1]TABLE 4
Measurements of Woolleya spp. described in this paper. Unless otherwise indicated, measurements are in μm.

Species	Woolleya sprenti			$\frac{\text { W. martini }}{\begin{array}{c} \text { Antechinomys } \\ \text { spenceri } \end{array}}$	W. hickmani	W. monodelphis
Host	Dasyurus viverrinus	Antechinus stuarti	Thylacinus cynocephalus		Antechinus stuarti Antechinus stuarti	
Male:						
Length (mm)	3.6-5.5	2.0-4.3	-	2.2-2.9	2.4-6.4	1.1-1.4
Oesophagus	360	250-280		220-270	330-370	$(160+$)
Ceph, inflation	100	65-70		70-100	70-90	50-55
Antr, end-nerve ring	190	110		130-190	195	-
- -excr. pore	310	200		200-250	350	
Spicules	350-400	300-320		180-220	260-340	115-125
Gubernaculum	90-100	70-80		55-65	50-55	30-40
Female:						
Length (mm)	5.3-7.8	5.2-5.5	5.5, 5.8	2.9-3.4	5.3-6.2	1.2-1.4
Oesophagus	360-430	280	360, 370	310-320	280-320	150-170
Ceph. inflation	90-100	70	80,90	75-95	65-80	50-55
Antr. end-nerve ring	180-230	155	175,185	170-185		-
-exer. pore	270-350	240-260	350, 355	270-310		-
Tail	100-110	70	75, 80	70-80	50-65	60-90
Postr. end-vulva	710-1000	380-430	800, 800	600-800	340-610	100-140

Fig. 77. Woolleya hydromyon, transverse section of body
Fig. 78. Woolleya acinocercus, transverse section of body.
Figs. 79-85. Woolleya sprenti. Fig. 79.-Anterior end. Fig. 80. Oesophageal region. Fig, 81,-Transverse section of body. Fig. 82.-Posterior end of mate. Fig. 83.-Dorsal and one externodorsal rays. Fig. 84.-Spicules. Fig. 85.-Posterior end of female.
Figs. 77, 79, and 83 to scale hesite 77; Figs 78 and 84 to scale beside $84 ;$ Figs. 81 and 82 to scale beside 82.

Woolleya hickmani n.sp.

FIGS. 90-93; TABLE 4
Host and locality: Antechinus stuartii from Condor Creek and ML. Tidbinbilla, A.C.T, These are longish coiled worms. The cuticle is raised into ten or twelve longitudinal crests, extending for most of the body length, and more or less evenly distributed around the
body, the widest gap being on the dorsal side (Fig. 91). The buccal capsule is shallow and the dorsal tooth short.

The bursa is more or less symmetrical, the dorsal lobe not separated from laterals. The arrangement of the rays is shown in Fig. 92 . The spicules bifurcate at about $3 / 4$ or $4 / 5$ their length; each branch ends in is blunt point,

Figs. 86-89. Wonlleya martini. Fig. 86.-Anterior end. Fig. 87.-Transverse section of body. Fig. 88.- Part of bursta. Fig. 89.- Posterior end of fermale.

Figs. 90-93. Woolleya hichmami. Fig. 90.-Anterior end. Fig. 91.-Transverse section of body hehind vesophagus. Fig. 92.-Bursa. Fig. 93.-Postexior cnd of female.
Figs. 94-98. Wonlleya monodelphis. Fig. 94.-Anterjor end. Fig. 95.-Transverse section of body. Fig. 96.-Bursa. Fig. 97.-Spicules. Fig. 98.-Posterior end of fenale.
Figs. 86, 91, 94, and 97 to scale beside 94: Figs. 87. 88, 90. 92, 96 . and 98 to scale beside 88.
the longer one rather more curved at the tip. Woulleyi monodelphis n.sp.

A thin plate-like gubernaculum is present.
The posterior end of the body of the female is slightly swollen; the tail tapers somewhat and is rounded at the end, with a terminal spike. Two ovejectors are well-developed. Eggs are about 60×30 alm.

This species dillers from W. martini in the distribution of the cuticular crests and in the branching of the dorsal ray (see Figs. 88, 92).

FIGS. 94-98; TABLE 4
Host and locality: Antechinus stuartii from Condor Creek, A.C.T.
This is a very small species; the anterior end of the body ends in a more or less tight spiral: the posterior is curved, and in the female distinctly swollen in the region of the vulva. There are four longitudinal ventral crests, on the anterior two-thirds or more of the body. The
cephalic inflation is about two-thirds the length of the ocsophagus. The buccal capsule is large, the dorsal tooth very small. The posterior end of the oesophagus was seen ciearly in only one specimen, and the nerve ring and excretory pore were not seen in any.

The arrangement of the hursal rays is shown in Fig. 96. The dorsal ray is unusually stout, and arises separately. The branches of the dorsal ray are very small, and it is possible that the final branch shown in Fig. 96 is divided. The spicules are hifid for ahout one third of their Jength, one branch of each being thicker and slightly longer than the other. A slender gubernaculum is present.

The tail of the female is relatively long and tapers to a fine point The vulva lies about one tail length in front of the anus, between two short and wide sub-ventral crests or flaps. There is only one ovejector and uterus, the antenor. No eggs were seen.

This species differs from all others referred to Woolleya in being monodelphous, in the wide externo-dorsal rays, and in the very small
size, and from most of the specles in the shape of the tail of the female.

Acknowledgements

The collections used in this sludy were made available by a number of people. Some material from Tasmania was sent by Dr. B. Munday and Mr. R. Green of Launceston, and some by Dr. John Hickman of Hobart. Dr. John Calaby (C.S.IR.O. Division of Wildlife Management) sent some nematodes from a numbat; Dr. P. Woolley contributed most of the material from Antechinus stuartii. The bodies of Antechinomys sp, native cats, and a numbat were donated by my colleague, Protessor P. G. Martin. Material from Queensland wallabies was sent by the late Dr. M. J. Mackerras. Professor Sprent (Dept. of Parasitology, University of Queensland) very kindly let me have the two worms from the thylacine.

All of these people have taken considerable trouble to send worms or host bodies in a good state of preservation, and I am very grateful to them.

Most of the work was carried out while in receipt of a Rural Credits Research Grant,

References

Baylus, H. A. (1930) - Four new trichostrongylid nematodes from Queensland. Amn. Mag. nar. H/st, 10 (6), T-18.
Berlis. H. A. (1931).-A nomenclatural conrection. Ann. Mos, nat. Hist, 10 (7), 550.
Cameron, I. W. M. (1931)--On a species of trichostrongyle from the Tasmanizn Devil. $]$, Helminth. 9, 153-156.
Chandile. A. C, (1924)-A new genus of trichostrongylid worms from the kangatoo. Parasitology 16, 160-163.
Durette-Desset, M, (1964),-Les systěmes d'arêtes cuticulaires chez les nématodes héligmosomes. Ftude de cinq espèces parasites de rongeurs de la Maboké. Cahiers de La Maboké 2, 40-78.
Divette-Desset, M. (1966)-Sur deux nouveaux trichostrongyles parasites du Porc-Epic au Viet-Nam. Annts. Parasit. hum. comp. 41. 453-466.
JNgls, W. G. (1968). -The geographical and evolutionary relationships of Australlan trichostrongyloid parasites and their hosts. 1. Linn. Soc. 47, 327-347.
Johnston, T. H., de Mawson, P. M. (I938)Some nematodes from Australinn marsupials. Rec. S. Aust. Mus. 6, 187-198.

Iohnston, T. H., \& Mawson, P. M. (1939).Strongylate nematodes from marsupials in New South Wales. Proc. Linn. Soc. N.S.W. 64, 513-536.
Johnston, T. H., \& Mawson, P. M. (1940a),Nematodes from South Australia. Trans. R. Soc. S. Aust. 64, 95-100.
Johniston, T. H., \& MAWSON. P. M. (1940b).New and known nematodes from Australian marsupials. Proc. Linn. Soc, N.S.W. 65, 468 476.

Johnston, T. H., \& MAwson, P. M. (1949).Some nematodes from Australian hosts together with a note on Rhabrtitis allgeni. Trans, R. Soc: S. Aust. 73, 63-71.

Mawson. P, M. (1960), -Nematodes belonging to the Trichostrongylidne, Subuluridae, Rhabdiasidae, and Trichoridac from bandicuots. Aust. J. Zool. 8, 261-284.
Mawson, P. M. (1961) -Trichostrongyles from rodents in Queensland, with comments on the genus Longistriata (Nematoda: Heligmosomatidae). Aust. J. Zool. 9. 791-826.
Thomas (-Mawson), P. M. (1959).-Sorne nematode parasites from Anstralian hosts, Trans. R. Sor. S. Aust 82, 151-162.

[^0]: * Zoology Department, University of Adelaide, Adelaide, S. Aust. S000.

[^1]: 1 The number of terminations of each spicule is not stated th the description of this spocies.

